Chemical evolution with radial mixing
نویسندگان
چکیده
Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and α elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva–Copenhagen survey (GCS) of the solar neighbourhood, and an acceptable fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age–metallicity plane although this plane was not used in the fitting process. Although this model’s star-formation rate is monotonic declining, its disc naturally splits into an α-enhanced thick disc and a normal thin disc. In particular the model’s distribution of stars in the ([O/Fe],[Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc’s ridge line is entirely due to stellar migration and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar populations with high σz from inner regions of the disc to the solar neighbourhood provides a natural explanation of why measurements yield a steeper increase of σz with age than predicted by theory. The metallicity gradient in the ISM is predicted to be steeper than in earlier models, but appears to be in good agreement with data for both our Galaxy and external galaxies. The absolute magnitude of the disc is given as a function of time in several photometric bands, and radial colour profiles are plotted for representative times.
منابع مشابه
Using Magma Mixing/Mingling Evidence for Understanding Magmatic Evolution at Mount Bidkhan Stratovolcano (South-East Iran)
Mount Bidkhan stratovolcano is located in the central Iranian volcanic belt. It is composed of several types of pyroclastic deposits, lava flows and intrusive bodies. Textural and chemical characteristics of plagioclase phenocrysts from the eruptive products volcanic edifice, record complex magma mixing events over the lifetime of the volcano. Evidences such as xenocrystic high Al+Ti clinopyrox...
متن کاملGas-phase CO in protoplanetary disks: A challenge for turbulent mixing
This is the first paper in a series where we study the influence of turbulent diffusion and advective transport on the chemical evolution of protoplanetary disks, using a 2D flared disk model and a 2D mixing gas-grain chemical code with surface reactions. A first interesting result concerns the abundance of gasphase CO in the outer regions of protoplanetary disks. In this Letter we argue that t...
متن کاملHeat Transfer Correlation for Two Phase Flow in a Mixing Tank
Mixing tanks equipped with mechanical stirrer are broadly applied in chemical and petrochemical industries, due to their variety of industrial process requirements. In this study, helical single blade mixer was designed applying CATIA and then mixing of fluid and solid particles, in a tank with this agitator was examined by OpenFOAM. For velocity distribution in the mixing tank, continuity, mom...
متن کاملEffect of Bed Diameter on the Hydrodynamics of Gas-Solid Fluidized Beds
Effect of scale on the hydrodynamics of gas-solid fluidized beds was investigated in two fluidized beds of 152 mm and 78 mm in diameter. Air at room temperature was used as the fluidizing gas in the bed of sand particles. The Radioactive Particle Tracking (RPT) technique was employed to obtain the instantaneous positions of the particles at every 20 ms of the experiments. These data were u...
متن کاملRadial migration in a bar-dominated disc galaxy – I. Impact on chemical evolution
We study radial migration and chemical evolution in a bar-dominated disc galaxy, by analysing the results of a fully self-consistent, high-resolution N-body+smoothed particle hydrodynamics (SPH) simulation. We find different behaviours for gas and star particles. Gas within corotation is driven in the central regions by the bar, where it forms a pseudo-bulge (discybulge), but it undergoes negli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008